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Abstract— Although recent semisupervised approaches have
proven their effectiveness when there are limited training data,
they assume that the samples from different actions lie on a
single data manifold in the feature space and try to uncover
a common subspace for all samples. However, this assumption
ignores the intraclass compactness and the interclass separability
simultaneously. We believe that human actions should occupy
multimanifold subspace and, therefore, model the samples of
the same action as the same manifold and those of different
actions as different manifolds. In order to obtain the optimum
subspace projection matrix, the current approaches may be
mathematically imprecise owe to the badly scaled matrix and
improper convergence. To address these issues in unconstrained
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convex optimization, we introduce a nontrivial spectral projected
gradient method and Karush-Kuhn-Tucker conditions without
matrix inversion. Through maximizing the separability between
different classes by using labeled data points and estimating
the intrinsic geometric structure of the data distributions by
exploring unlabeled data points, the proposed algorithm can
learn global and local consistency and boost the recognition
performance. Extensive experiments conducted on the realistic
video data sets, including JHMDB, HMDB51, UCF50, and
UCF101, have demonstrated that our algorithm outperforms the
compared algorithms, including deep learning approach when
there are only a few labeled samples.

Index Terms— Discriminant analysis, Karush-Kuhn-Tucker
(KKT) conditions, manifold learning, semisupervised learning,
spectral projected gradient (SPG).

I. INTRODUCTION

ISUAL recognition draws strong research interest in

computer vision because of its promising applications for
feature selection, image annotation, video concept detection,
and so on [1]-[29]. With the developments in cloud storage
technologies, the number of personal images/videos increases
rapidly, and it becomes an important challenge to organize
these resources effectively. Common approaches of visual
recognition are to train supervised classifiers from large-
scale labeled data. However, the amount of labeled data is
extremely scarce compared with the unlabeled data in the
real world. When confronted with huge amounts of unlabeled
samples, manual annotation or labeling should be prohibitive.
Consequently, semisupervised learning, which can make good
use of both labeled and unlabeled data, is applied to explore
feature correlation from the original feature space.

Motivated by the progress of semisupervised learning,
a few research attention has been paid to semisupervised
action recognition [30], [31]. A common limitation of the
existing supervised and semisupervised action recognition
algorithms is that they evaluate the importance of commonly
shared structure between different actions, without considering
intraclass compactness and interclass separability simulta-
neously [30], [31]. For example, even though legs motion
appears in similar actions such as the SoccerJuggling and the
SoccerPenalty, these between-class actions have much similar
motion and dissimilar components simultaneously. Although
the shared structural uncovering and label correlation mining
have proven beneficial to action recognition in [30] and [31],
the ways to learn discriminant features in a semisupervised
framework for action recognition have not been largely
addressed. To solve this problem, some state-of-the-art
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Fig. 1. Tllustration of the proposed approach. (a) In feature space, actions can be described as points. However, intersection formed by different classes may

confuse the discriminative. (b) By employing discriminant multimanifold analysis, points in feature space can be mapped into new manifolds where different
actions are well separated while the same actions become closer. The proposed method not only preserves local geometrical properties but also maximize the
discriminatory power between classes on multimanifold by exploiting within-class and between-class similarity graphs.

algorithms are proposed to take a discriminant analysis into
consideration for visual recognition. For example, the works
in [32]-[36] implement their methods in a supervised way.

Another limitation of current semisupervised approaches
is that they solve their nonconvex optimization by
impressive  derivation and alternating-least-squares-like
iterative algorithm, which fails to discover the most valuable
optimum in a mathematical way [3], [4], [30], [31], [37]. This
is because the subproblem of objective function optimization
is less rigorous, which have not discussed the singularity of
the deduced matrix. In addition, the optimum is supposed to
satisfy the Karush—-Kuhn—Tucker (KKT) conditions, but they
do not explain the KKT conditions of orthogonal constraint,
and the accuracy of convergence optimum also lack of further
analysis. Recent research studies have indicated that it is
beneficial to obtain an optimal solution by projected gradient
methods. Motivated by this fact, the projected gradient method
has been introduced to the field of multimedia [38], [39].
Although spectral projected gradient (SPG) method [40] has
been studied extensively in both theory and practice [38],
[41], [42], so far no study has formally applied its techniques
to action recognition in semisupervised way.

As mentioned above, it remains unclear how to manually
define feature correlation in action recognition. Thus,
we propose to model the intramanifold compactness and the
intermanifold separability simultaneously and characterize
high-level semantic pattern through the local action features by
discriminant multimanifold analysis, as shown in Fig. 1. The
proposed algorithm combines the strengths of semisupervised
learning, discriminant analysis, multitask learning, and
unconstrained optimization. Both labeled and unlabeled data
are utilized for action recognition in classifiers’ training phase.

A. Motivation and Contributions

It is true that there is a trend to apply deep learning
approaches to achieve good action recognition performance,

by relying on large-scale labeled training data. Although
there are a few large-scale data sets, e.g., SportsIM [43],
YouTube8M [44], and ActivityNet [45], obtaining and anno-
tating such data sets require a significant amount of time,
resources, and effort. In contrast, collecting unlabeled videos
is much easier. The semisupervised learning can effectively
leverage the unlabeled data.

Moreover, videos in those data sets are limited to sports
and/or daily activities. For real-world applications such as
anomaly detection in surveillance and labeled data (videos
contain rare anomalous events, e.g., crime related activities)
are notoriously hard to obtain [46].

In addition, videos in surveillance applications are very
different from other web-based multimedia videos, e.g.,
Sports1M, YouTube8M, and ActivityNet, due to content, back-
ground, device noise, action complexity, viewpoint, scale, and
so on (see Fig. 2). The deep learning model on multimedia
data set may not work well on surveillance data set, as the
deep learning approach learned to exploit the specifics of
a particular action from multimedia videos rather than the
learning models of characters that are then used for parsing
the action from other types of videos [47].

The deep learning approaches not only rely on large-scale
labeled training data but also are restricted by the capacity
of GPUs. Moreover, overfitting is still an unsolved problem,
especially when there is limited training data. How to lever-
age the unlabeled data and how to pursue efficient learning
methods trained on small data sets are worthwhile scientific
questions of broad interest to the community [19], [48], [49].

The goal of this paper is to uncover the discriminative
information by exploring action features and achieve the state-
of-the-art action recognition performance based on the semi-
supervised setting, which uses only part of the labeled training
data, as compared with other semisupervised approaches
under the same setting. The distinction we want to make is that
we do not aim to compete with fully supervised approaches,
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which reported better performance than ours on the evaluated
data sets. The contributions are summarized as follows:

1) Ours is the first work to consider both multimanifold
analysis and semisupervised learning in action recog-
nition, given that samples (action videos) may lie in a
multimanifold subspace. By modeling a multimanifold
subspace, both intraclass compactness and interclass
separability are taken into account.

2) To solve the unconstrained convex optimization in
our problem, we propose to incorporate SPG and
KKT conditions to avoid matrix inversion, as done in
[26] and [27], which may suffer from the singular-
ity, thereby leading to better convergence and a more
accurate solution. In addition, we provide experimental
justification on the convergence.

3) We not only introduce a new idea (i.e., multimanifold
analysis) in the problem formulation of semisupervised
action recognition but also develop an effective and
efficient algorithm to solve the optimization of the
objective function.

4) Extensive experiments have validated that our method
achieves the best recognition performances on four
benchmarks in the semisupervised setting, while has the
fastest training speed as compared with the state of the
art [e.g., subfeature uncovering with sparsity (SFUS),
semisupervised feature correlation mining (SFCM),
and multiple feature correlation uncovering (MFCU)].
We believe our work provides valuable insights into
video action analysis in a semisupervised manner.

II. RELATED WORK

In this section, we review the related research on manifold
learning, semisupervised learning, and multitask learning.

A. Discriminant Analysis

Previous works have stated that manifold learning is capable
of mining geometry structures information by regarding a
space of probabilities as a manifold [33], [34], [36], [50]-[55].

Cai and He [33] perform an active learning algorithm which
lies on the data manifold adaptive kernel space by using
graph Laplacian, which can reflect the underlying geometry of
the data. Harandi ef al. [51] develop a discriminant analysis
approach on Grassmannian manifolds by characterizing intr-
aclass compactness and interclass separability. Li er al. [52]
contribute a novel coclustering algorithm based on symmet-
ric nonnegative matrix trifactorization by manifold ensemble
learning. Yan et al. [53] propose a novel multitask learning
framework for multiview action recognition by multitask linear
discriminant analysis. Jiang et al. [34]-[36] try to match
a low resolution or poor quality face image to a gallery
of high-resolution face images by discriminant analysis on
multimanifold. Yu and Zhao [50], [54] introduce the penalty of
a lasso or elastic net into the exponential discriminant analysis
so that the key variables responsible for fault diagnosis can
be automatically selected. In [56]-[58], they exploit the local
manifold structure to capture the discrimination features when
reconstructing the face images. Ma et al. [55] exploit the
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intrinsic geometrical structures among the feature points for
shape registration based on manifold regularization. Inspired
by these research studies, we try to join the idea of dis-
criminant analysis into a semisupervised framework and use
the labeled data points to maximize the separability between
different classes.

B. Semisupervised Learning

Semisupervised learning has been widely used for its
promising performance in different applications [1], [3], [4],
[301, [311, [37], [59]-[62]. Given labeling a large amount
of training data is time-consuming and expensive, unlabeled
samples can be exploited to learn data correlation by semisu-
pervised learning. Thus, semisupervised learning is beneficial
in terms of both the data analysis performance and human
laboring cost.

Graph Laplacian-based semisupervised learning has shown
its simplicity and efficiency in visual concept recognition [63].
Nie et al. [59] propose a manifold learning framework based
on graph Laplacian and compared its performance with
other algorithms. Ma et al. [4] develop a novel feature
selection method and apply it to automatic image annotation.
Yang et al. [1] present a framework for multimedia content
analysis and retrieval which consists of two independent
algorithms. Chang and Yang [3] build a semisupervised feature
selection framework by mining correlations among multiple
tasks and apply it to different multimedia applications.
Wang et al. [30], [31] point out that action recognition can
be improved by a complicated formulation and iterative
algorithm. In addition, semisupervised learning has also been
applied to solving the problems of face recognition [60],
image matching [61], image fusion [62], and so on. Motivated
by these papers, we design a semisupervised learning
algorithm with graph embedding discriminant analysis, then
the intrinsic geometric structure of the data distributions can
be estimated by exploring the unlabeled data points.

C. Multitask Learning

Multitask learning has gained increasing interest in many
applications for its advantage, which can learn multiple related
tasks with a shared representation [2], [64], [65]. Recent
research studies have indicated that learning multiple related
tasks jointly always outperforms learning them independently.
Inspired by the progress of multitask learning, researchers have
introduced it to the field of multimedia and demonstrated its
promising performance on multimedia analysis. For example,
Yang et al. [2] study a novel multitask feature selection
algorithm in a batch mode by leveraging shared information
among multiple related tasks. Ma et al. [64] design a multitask
learning framework to jointly optimize the classifiers for
both laboratory and real-world data sets. Yang er al. [65]
learn a novel clustering model to capture correlations among
the related clustering tasks and/or within an individual task.
Despite their good performances, these classical algorithms are
all implemented only with labeled training data. Following
the related works, the proposed framework can learn the
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Fig. 2. Example frames from (a) Current multimedia videos. (b) TRECVID surveillance videos. (c) City surveillance videos. We can see the characteristics
in different types of videos. The left two columns show the widely used multimedia videos from movies, sports, youtube, and so on. The middle two columns
illustrate multicamera airport surveillance domain evaluation data from TRECVID. The right two columns demonstrate various surveillance camera records
from city environment consisting of indoor and outdoor scenes. Given the realistic application of video investigation, finding specific abnormal actions in
daily life should be focused on public safety. Nevertheless, existing researches including action recognition and event detection have not contained those rare

unusual actions.

global consistency and the local geometric, and hence, the per-
formance can be improved by mining correlations between
multiple related tasks.

There are two aforementioned research studies close to our
work, which are both proposed by Wang er al. [30], [31].
They assume that the samples from different actions define
a single data manifold in the feature space, visual words of
different action videos may share a common structure in a low-
dimensional space. They introduce a transformation matrix Q
to characterize the shared information and employ a regularize
term of the shared information among different features.
They solve their constrained nonconvex optimization problem
by comprehensive derivation and alternating-least-squares-like
iterative algorithm. However, the deduced inverse matrix is
close to singular or badly scaled during the optimization
process, which may make the results inaccurate.

To solve the above-mentioned issues, we model the sam-
ples of the same action as the same manifold and those of
different actions as different manifolds. As described before,
we claim that multimanifold mapping can maximize the dis-
criminatory power while preserving local geometry, mining
shared structure is not our purpose, so we discard the shared
structure regularization term, and model the local geometrical
structure of manifolds by building a within-class similarity
graph A, and a between-class similarity graph A,. We also
remove the selection matrix U in our function. Since the
proposed optimization solution in [30] and [31] may be
mathematically imprecise, we introduce the SPG method and
the KKT conditions to avoid matrix inversion and improper
convergence.

III. PROPOSED APPROACH

This section begins with an elaboration of the formulation of
the proposed approach. Our method incorporates several tech-
niques including the least-square loss function, graph-based
semisupervised learning, feature correlation mining, SPG,
KKT, and discriminant multimanifold analysis. It is named

semisupervised discriminant multimanifold analysis (SDMM).
Following this, we describe how to obtain the classifiers in
detail.

A. Formulation

To exploit the feature correlation for action recognition,
we define the training set as X = [x,...,x,] € R4*1 and
then associate it with its ground truth labels matrix ¥ =
V1, ..., yalT € {0, 1})">¢. Note that x; € R*! is the i-th
datum, and n is the size of X. We aim to learn ¢ prediction
functions (classifiers) { f¢}7_,, with one for each class. ¢ stands
for the class number. Usually, the prediction function f is
defined as

fx)y=w'x (1)

where x is a datum and w € R?*! is weight vectors.
By denoting W = [w1, ..., w.] € R?%¢_ the above-mentioned
function becomes

fx)=x"w. 2)

As indicated in [66], the least-square loss function achieves
comparable performance to other loss functions, e.g., hinge
loss or logistic loss. To obtain the projection matrix W,
we employ least square regression to solve the following
optimization problem:

min [1X7 W — Y[+ al Wi ©)

where a is the regularization parameters. | - ||%p denotes
Frobenius norm. ||W||%p controls the complexity of the model
to avoid overfitting.

Following the assumption of [31], the nearby data points
are likely to have the same label, and the edges of graph A
refers to connect pairs of data points. A denotes the symmetric
matrix with elements describing the similarity between the
pairs of data points. However, unlike [31], utilizing one graph
model to approximate the density and manifold information,
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in this paper, we model the local geometrical structure of
manifolds by building a within-class similarity graph A,, and a
between-class similarity graph A. For simplicity, A,, and A
are defined based on the nearest neighbor graphs as follows:

Auti,jy = | o € Mol orxy @ M)
0, otherwise
o 1, xj € Np(x;) or x; € Np(x;
Ap(i, j) = i € Nolxj) or x; s
0, otherwise.

In (4), N, (x;) is the set of neighbors x;, sharing the same
label with x;. Np(x;) contains some neighbors having different
labels in (5). We note that intraclass and interclass distances
between points can be encoded on manifold by using similarity
graphs [36].

B. Discriminant Analysis

Our goal is to maximize discriminatory power while
preserving local geometry, by mapping the points to new
manifold, i.e., w : X; — F;. To better demonstrate the
relationship between the data distribution on manifold and
feature correlation mining, we define a predicted label matrix
F = [Fi,..., F,]¥ € R" for all the training videos in X,
where F; € R¢*! is the predicted label vector of the i-th datum
X € X.

Inspired by the manifold discriminant analysis
[34], [51], [67], we aim to minimize the intramanifold
compactness and maximize the intermanifold separability
simultaneously. A suitable transform would place the
connected points of A, as close as possible, while moving
the connected points of A, as far as possible. This goal
can be achieved by optimizing the following two objective
functions:

1 C n
fi=min2 >0 > (Fie = Fjo)* Au(is ) (6)

t=1i,j=1
1 c n
f> = max 3 z z (Fic — Fjo)*Ap(i, J) )
=1i,j=1

where Fj, is the (th element of F;. f; punishes neigh-
bors in the same class if they are mapped far away,
while f> punishes samples of different classes if they are
mapped close together. Hence, the overall discriminative infor-
mation can be represented as

1 C n
f=520 2 (Fie = FjoAu(is )
t=1i,j=1
1 C n
—3B 20 D (Fue = FieP Ay ) ®)

t=1i,j=1

where f is a regularization parameter which controls the
tradeoff between the intramanifold compactness term and the

2955

intermanifold separability term. Note that

% S (Fie = Fio)*Awlis, )

(=1i,j=1
1 . P T T T
=5 > Awli, )(FFi+ F] Fj —2F F))
i,j=1
= t(FT(Dy — Ap)F) = te(FT L, F) 9)

where tr(-) denotes trace operator, D, is a diagonal matrix
with D, (i,i) = Z?Zl Aw,(@,j), and L, = D, — A, is the
Laplacian matrix [68]. Similarly, (7) can be simplified to

l c n ' .
> DD (Fie = Fio)*Ap(is )
(=1i,j=1

=tr(FT (D — Ap)F) = tw(FTL,F)  (10)

where Dy, is a diagonal matrix with Dy(i, i) = Z?=1 Ap(i, J).
Therefore, equation (8) can be rewritten as

% > (Fie = Fio)*Awlis, )

f =
(=1ij=1
1 C n
—5B 2 D (Fie = Fio)* A, j)
r=11i,j=1

= tr(FT (L, — BLp)F). (11)

C. Multitask Learning

To alleviate the tedious work in supervised learning,
we extend the above-mentioned function to a graph-based
semisupervised method for leveraging both labeled and
unlabeled data as shown in [4] and [37]. Most existing
semisupervised learning methods assume that the nearby
data points are likely to have the same label. Specifically,
the data points which can be connected via a path through
high-density regions on the data manifold are likely to have
the same label [4], [30], [37]. Nevertheless, the density and
manifold information are inadequate due to limited labeled
data. To relieve this problem, we utilize the graph model
mentioned in Section III-B to approximate the density and
manifold information.

To begin with, we redefine the training data set as
X = [XT,XMT]T, where X; = [x1,...,xn]7 and X, =
[Xm+1s--- ,xn]T are the two subsets of the data with labels
and without labels, respectively. The label matrix of X is
Y = YL, vI17, where ¥, = [y1,...,ym]’ € 0,1™*¢ and
Yo = mtts--synl? € ROTMXC is a matrix with all
zeros. According to [30], [37], and [69], the graph embedded
label prediction matrix F' should be consistent with similarity
graphs A, and Ap, and the ground-truth labels Y. The idea
of multimanifold and label consistency can be generalized as

c l n
. 2 .o
min ; 3 i’]Z::l(sz Fi) Aw(i, J)

1 n n
_Eﬁi;w —Fj0)* Ap(i, j)+i§(ﬂz—yif)2
= min tr(F’ (L, — BLyp)F) + tr(F — Y)[ (F = Y).
r (12)
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Different from previous shared structure learning algorithms
[4], [30], [31], [37], we do not take shared structure learning
into account in semisupervised learning framework. Instead,
we propose a novel joint framework by incorporating graph
embedding method on multimanifold and the classifiers, which
can be formulated as

— BL)F) +u(F —Y)[(F-Y)

u Z(Z loss( ¢ (x:), Fie) + anwenz) (13)

t=1 \i=1
where ¢ > 0,a > 0, and f > O are the regularization
parameters. As discussed in Section III-A, we employ the
Frobenius norm regularized loss function and then rewrite our
objective as

min tr(F (L,
F,w

I}livrvl tr(FT (L, — BLp)F) +tr(F — V)T (F - Y)

+u(IXTW = FI% + a|W|3).

There are three issues worthy of consideration. First,
our objective function (14) is an unconstrained convex
optimization problem. It does not contain the shared subspace
information regularization term, hence the global optimum can
be obtained by performing alternating least squares or SPG
method [38], [42]. Second, the solution of objective functions
shown in [1], [4], [30], and [31] have not discussed the
singularity of the matrix. In [38] and [42], the SPG method
has been proved that it can handle the aforementioned issues
without matrix inversion. Third, the convergence conditions
in [4], [30], and [31] merely depend on monotone decreasing.
Since the objective function value becoming stable may
be mathematically improper convergence, we utilize KKT
conditions to deal with this matter.

(14)

D. Optimization

For reducing the dimension of X, we follow [37] to per-
form singular value decomposition (SVD), in which all the
eigenvectors corresponding to the nonzero eigenvalues of the
covariance matrix is preserved.

After that, according to [38] and [42], a general uncon-
strained minimization problem can be solved iteratively by
introducing the SPG method and the trace operator. Therefore,
we define a function g(F, W) as a new objective problem
instead of (14)

g(F, W) = I}livrvl tr(FT (L, — BLp)F) +tre(F — V)T (F —Y)

+utr(XTW — FYT (XTW — F) + patr(WT w).
(15)

By setting the derivative of (15) with respect to F and W,
respectively, we have

og(F, W)
Vegr = —2—>
sr oF
=2(Ly — BLy)F +2(F =Y) —2u(XTW — F)
(16)
og(F, W
Vew = % =2uX(XTW — F) 4+ 2uaW. (17)
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If (F*, W*) is an approximate stationary point of (15), it is
supposed to meet the KKT condition of (15) like this

8F| oy =0 VEW| ey (18)
Then, the iteration stopping criterion becomes
IVgr(F*, WHI? + [Vew (F*, WH|? < (19)

where ¢ is a nonnegative small constant. In summary, the clas-
sifiers training process of the proposed method is detailed in
Algorithm 1.

Algorithm 1 SDMM Algorithm
Input:
The training data X € R?*"
The training data labels ¥ € R"*¢
Semi-supervised Parameters a, f and u.
SPG Parameters M, " ,at .y, d) and &
Output:
Optimized W* € R4x¢

min’

Perform SVD to reduce X’s dimension according to [37]
Compute the within-class similarity graph L,, € R"™*"
Compute the between class similarity graph L, € R™*"
Initialize = 0, aj € (a,f,, af), 4 =1

Initialize F© e R"*¢ randomly

Initialize W© e R?*¢ randomly

1: repeat > SPG method
2 Compute dF®) = —o; Vgp(F©O, w®)
3 Compute dW) = —a," Vgy (FO, W)
4 Compute F = FO 4 JdF®
5. Compute W = W® 4+ jgw®
6 if g(F,W) <yi{(dF ", Vgr(FO, W)

HAWD, Vew (FO, W)

+ max g(FU=D)_ w(=)y then

0<j <minf{r,M—1}
7. FOH) = o we+) — W
3 (t) F(z+1) F(z), (t) — w+h _ y®
9: () = Vgp(FUtD, W(z+1)) — Vgr(FO, w®)
10: yé” = Vew(FUHD, WOty — vy (FO, W)
11: Compute by = (s i:), yl(t)) + (sg), yg))
12: if b; <O then o | =af,
13: else
14: Compute a; = (s\"), sf”> + (s, (”>
15: Compute a;fH = min{a;},,, max{amm, b L1}
16: end if
17: t=t+1
18:  else
19: Anew € [014, 02A]
20: A= Anew
21:  end if
22: until Convergence according to (19) > KKT conditions
Return W*

IV. EXPERIMENTS

To validate our method for action recognition in videos,
we first demonstrate Fisher vector (FV) used for data represen-
tation. Then, we conduct extensive experiments on challenging
data sets to test our framework’s performance.
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COMPARISON WITH IDT-BASED HAND-CRAFTED FEATURES (AVERAGE

TABLE I

ACCURACY £ STD) WHEN 3 x ¢ TRAINING VIDEOS ARE LABELED

TABLE V
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COMPARISON WITH CNN-BASED DEEP-LEARNED FEATURES (AVERAGE
ACCURACY £ STD) WHEN 3 x ¢ TRAINING VIDEOS ARE LABELED

JHMDB HMDB51 UCF50 UCF101 JHMDB HMDB51 UCF50 UCF101
Ours 0.4238 + 0.0185[0.2738 £ 0.0115|0.6184 £ 0.0174|0.5075 + 0.0132 Ours 0.5020 £ 0.0165[0.3231 £ 0.0120 | 0.6829 + 0.0174|0.6861 + 0.0128
SFUS  [0.3258 &+ 0.0243|0.1973 £ 0.0147|0.5465 &+ 0.0177[0.4315 & 0.0168 SFUS  ]0.4309 + 0.0134/0.2617 & 0.0133]0.6208 & 0.0177[0.6257 % 0.0136
SFCM  [0.3440 £ 0.0187[0.2246 £ 0.0120[0.5571 + 0.0166|0.4362 + 0.0150 SFCM  [0.4721 £ 0.0178[0.3011 £ 0.01080.6394 + 0.0166|0.6429 + 0.0132
MFCU [0.3552 £ 0.0167|0.2405 £ 0.0127[0.5803 £ 0.0185|0.4588 + 0.0133 MFCU [0.4783 £ 0.0153]0.3031 £ 0.0127[0.6543 £ 0.0185|0.6527 £ 0.0137
SVM-x2 [0.3324 & 0.0213[0.2019 & 0.0132]0.5420 & 0.0198]0.4204 & 0.0162 SVM-x2 [0.4289 & 0.0202[0.2608 & 0.0112[0.6117 & 0.0198]0.6231 £ 0.0121
SVM-linear|0.3773 4 0.0180{0.2351 4 0.0168|0.5851 + 0.0182]0.4681 £ 0.0145 SVM-linear | 0.4534 4 0.0180{0.2913 £ 0.0141{0.6245 £ 0.0182]0.6447 + 0.0133

COMPARISON WITH IDT-BASED HAND-CRAFTED FEATURES (AVERAGE

TABLE II

ACCURACY £ STD) WHEN 5 x ¢ TRAINING VIDEOS ARE LABELED

JHMDB HMDBS51 UCF50 UCF101
Ours 0.4658 + 0.01780.3293 + 0.0118|0.6743 + 0.0187|0.5963 + 0.0113
SFUS  [0.3775 + 0.01890.2645 + 0.0083 [0.5905 + 0.0183]0.5265 + 0.0121
SFCM  [0.3998 £ 0.0233]0.2719 £ 0.0069 [0.6183 £ 0.0240(0.5264 £ 0.0135
MFCU [0.4135 £ 0.0152]0.2830 £ 0.0122]0.6373 £ 0.0177/0.5486 £ 0.0128
SVM-xZ [0.3748 + 0.0143]0.2616 £ 0.0153[0.6007 & 0.0164[0.5127 + 0.0157
SVM-linear | 0.4120 £ 0.0122]0.2902 £ 0.0058[0.6320 £ 0.0212]0.5501 £ 0.0140

COMPARISON WITH IDT-BASED HAND-CRAFTED FEATURES (AVERAGE

TABLE III

ACCURACY =+ STD) WHEN 10 x ¢ TRAINING VIDEOS ARE LABELED

TABLE VI

COMPARISON WITH CNN-BASED DEEP-LEARNED FEATURES (AVERAGE
ACCURACY 4+ STD) WHEN 5 X ¢ TRAINING VIDEOS ARE LABELED

JHMDB HMDBS51 UCF50 UCF101
Ours 0.6066 + 0.0167 |0.3954 + 0.0088 [0.7646 + 0.0193|0.7390 + 0.0111
SFUS  [0.5219 + 0.0181(0.3296 + 0.0110(0.7323 4 0.0217]0.6841 + 0.0105
SFCM  [0.5591 £ 0.0160|0.3540 £ 0.0092[0.7472 £ 0.0180(0.7098 + 0.0113
MFCU [0.5667 £ 0.0153]0.3723 £ 0.0101]0.7472 £ 0.0178|0.7145 £ 0.0083
SVM-xZ [0.5231 =+ 0.0201]0.3257 £ 0.0123[0.7281 & 0.0207[0.6892 + 0.0127
SVM-linear | 0.5579 £ 0.0174[0.3551 £ 0.0097[0.7323 £ 0.0226|0.7187 £ 0.0126

TABLE VII

COMPARISON WITH CNN-BASED DEEP-LEARNED FEATURES (AVERAGE
ACCURACY =+ STD) WHEN 10 x ¢ TRAINING VIDEOS ARE LABELED

JHMDB

HMDB51

UCF50 UCF101 JHMDB HMDB51 UCF50 UCF101
Ours 0.5479 £ 0.0181[0.3980 £ 0.0073[0.8007 £ 0.0193|0.6843 + 0.0128 Ours 0.7284 + 0.0157 [ 0.4897 + 0.0106 |0.8427 + 0.0187 | 0.8477 + 0.0112
SFUS  ]0.4836 &+ 0.01850.3177 & 0.0126|0.7153 £ 0.0217]0.6280 + 0.0135 SFUS  [0.6723 + 0.0164|0.4172 + 0.0112(0.7844 + 0.0183]0.8054 + 0.0101
SFCM  [0.5029 £ 0.0169[0.3473 £ 0.0105[0.7311 + 0.0180(0.6273 + 0.0142 SFCM  [0.6934 £ 0.0183]0.4423 £ 0.0087 [0.7993 &£ 0.0240(0.8107 £ 0.0114
MFCU [0.5143 £ 0.0173]0.3598 £ 0.0082[0.7558 £ 0.0178|0.6396 £ 0.0078 MFCU [0.7034 £ 0.0145]0.4623 £ 0.0134[0.8141 £ 0.0177/0.8266 £ 0.0115
SVM-x2 [0.4618 & 0.0226[0.3235 & 0.0114[0.7384 & 0.0207]0.6057 & 0.0137 SVM-xZ [0.6710 =+ 0.0134]0.4206 & 0.0152[0.7767 & 0.0164[0.8001 + 0.0137
SVM-linear | 0.4957 4 0.0218|0.3617 £ 0.0078|0.7570 £ 0.0226|0.6425 £ 0.0153 SVM-linear | 0.6909 £ 0.0132]0.4512 £ 0.0057[0.7770 £ 0.0212]0.8173 £ 0.0103

COMPARISON WITH IDT-BASED HAND-CRAFTED FEATURES (AVERAGE

TABLE IV

ACCURACY £ STD) WHEN 15 x ¢ TRAINING VIDEOS ARE LABELED

TABLE VIII

COMPARISON WITH CNN-BASED DEEP-LEARNED FEATURES (AVERAGE
ACCURACY =+ STD) WHEN 15 x ¢ TRAINING VIDEOS ARE LABELED

JHMDB

HAMDB51 UCF50 UCFI01 JHMDB HMDB51 UCF50 UCF101
Ours  |0.5822 £ 0.0093[0.4407 + 0.0092[0.8578 £ 0.0085]0.7218 & 0.0076 Ours _ |0.7410 £ 0.0082[0.5830 £ 0.0090 |0.8899 + 0.0085|0.8683 £ 0.0078
SFUS _ |0.5341 &£ 0.0120]0.3613 & 0.0131]0.7811 & 0.0091|0.6437 & 0.0122 SFUS _ |0.6923 £ 0.0113]0.5200 & 0.0123]0.8253 & 0.0091|0.7898 & 0.0102
SFCM__ |0.5278 £ 0.0118]0.3822 & 0.0099]0.7955 & 0.0089|0.6320 & 0.0103 SFCM_ |0.7110 £ 0.0100|0.5373 & 0.0108|0.8290 =+ 0.0089]0.8070 & 0.0084
MFCU |0.5334 £ 0.0084]0.4035 & 0.0077]0.8104 & 0.0135]0.6701 & 0.0078 MFCU |0.7148 & 0.0089]0.5542 & 0.0087]0.8513 & 0.0135]0.8419 & 0.0087

SVM-x2 [0.5090 + 0.0136]0.3637 £ 0.0125[0.7782 & 0.0075|0.6324 + 0.0119 SVM-x2 |0.6941 =+ 0.0116]0.5189 £ 0.0115|0.8179 & 0.0075|0.8131 =+ 0.0098
SVM-linear | 0.5341 & 0.0085 |0.4020 & 0.0071|0.8104 £ 0.0083 |0.6796 £ 0.0080 SVM-linear|0.7134 & 0.0086 | 0.5370 & 0.0068 | 0.8439 = 0.0083 |0.8448 £ 0.0070
A. Data Sets

In the experiments, three data sets are used, including
the JHMDB data set [70], the HMDBS51 data set [71],
the UCF50 data set [72], and the UCF101 data set [73]. The
JHMDB data set is a subset of HMDBS51 with 928 clips
comprising 21 action categories. The HMDBS1 data set con-
tains 6766 video sequences recording 51 action categories.
The UCFS50 data set has 50 action categories, consisting of
real-world videos taken from YouTube. There are 6618 video
clips in UCF50. The UCF101 data set collects 13320 video
clips including 101 action categories. As far as the testing
set, we use the standard testing set provided by the authors
on JHMDB and HMDBS51 data sets, and the testing set of
the first split on UCF50 and UCF101 data sets. Due to the
random training samples selection, we repeat the experiment
for 10 trials to avoid any bias. The average accuracy and
standard deviation are reported.

For the JHMDB and HMDBS51 data sets, we follow
[30] and [31] and use the standard data partition provided
by the author. For the UCF50 and UCF101 data sets, unlike

[30] and [31] that randomly split each data set into training
and testing sets, we only use the first split provided by author
due to computation complexity and limited memory resource.
In addition, we randomly select 30 videos per category as the
training data including the labeled and unlabeled samples and
apply the original testing sets for comparison in a more fair
way.

B. Features

For hand-crafted features, we extract improved dense
trajectories (IDTs)-based features with HOG + HOF + MBH
descriptors [74]. The dimension D is reduced to 198 by
performing PCA and L2-normalization. After training a GMM
codebook with K Gaussians based on 256000 randomly
sampled features, each action video is represented by a
2DK = 6336 dimensional FV with Power L2-normalization,
if K =16 as TablesI-IV.

For deep-learned features, the convolutional neural networks
(CNN)-based features are selected, e.g., the trajectory-pooled
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Fig. 3. Comparisons on JHMDB with respect to different gmmSize of FV
encoding.

deep-convolutional descriptors (TDDs) [75] and temporal seg-
ment networks (TSNs) [76]. We follow [75] to concatenate
eight normalized deep-learned features from spatial conv4 +
conv5 and temporal conv3 + conv4 layers, let the dimension
of combined TDDs becomes D = 64 x 8 = 512, since each
TDDs’ dimension of a video is decorrelated to 64 by PCA.
Then, we encode the combined TDDs into FV representation,
and the final dimension of each video can be changed to
2DK = 16384 when K = 16, as shown in Fig. 3. Meanwhile,
the TSN models of 3 x ¢, 5 x ¢, 10 x ¢, and 15 x ¢ are
retrained according to [76], then we extract the global pool
features of 3 x ¢, 5 x ¢, 10 x ¢, and 15 x ¢, respectively,
by corresponding trained TSN model, concatenate rgb + flow
into 2048 dimension with Power L2-normalization, as shown
in Tables V-VIIL.

C. Experimental Setup

To evaluate the performance of our approach, the proposed
algorithm is compared to the five state-of-the-art methods
which include SVM with )(2 kernel, SVM with linear kernel,
SFCM [30], SFUS [4], and MFCU [31].

Note that SFCM, SFUS, and MFCU are semisupervised
learning approaches. SFCM and MFCU also exploit the
data manifold and are designed for action recognition.
To demonstrate the superiority of our method, we employed
these related state-of-the-art methods for comparison. Also,
with the available source codes, we can run experi-
ments on different data sets and settings to facilitate fair
comparisons.

For training phase, we denote ¢ as the class number for
each data set (¢ = 21, 51, 50, and 101 for JHMDB, HMDBS51,
UCF50, and UCF101, respectively). As semisupervised train-
ing set contains both labeled and unlabeled data, we randomly
select 30 videos per category in the training set, where
m labeled videos (m = 3, 5, 10, and 15) per category are
sampled, thus resulting in 3 x ¢, 5 X ¢, 10 X ¢, and 15 X ¢
randomly labeled videos, while the remaining training videos
are unlabeled.

For testing phase, we use the standard testing set provided
by the author on JHMDB and HMDBS1 data sets, and the
first split of the testing set on UCF50 and UCF101 data sets
due to the limited memory resource.
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TABLE IX
AVERAGE RUN TIMES (IN SECONDS) ON JHMDB

SFUS
44.63

SFCM
173.93

MFCU
104.83

Ours
41.93

For semisupervised parameters, including SFUS, SFCM,
MFCU, and our SDMM’s a, S, 1, we follow the same setting
utilized in [30] and [31] and range from {10_4,10_3,
1072,1071, 1, 10, 102, 103, 10%}.

For SPG parameters, since they are not sensitive to our
algorithm, we follow [38] and set M = 10, amin = 10715,
and amax = 1019, sufficient decrease parameter y = 1074,
safeguarding parameters 01 = 0.1, = 0.9, and Apew =
(1/2)(014 + 02 A). Initially, a9 € [@min, @max] 1S arbitrary,
we set ap = 1 in our experiments. Technically, since the
dimension of FV is relatively high, it is hard to stop iter-
ation for merely subtracting the last two objective function
values, we regard the relative error of the objective func-
tion values as iteration stopping criterion in Algorithm 1.
The nonnegative small constant ¢ of (19) is suggested to
set 1076,

D. Comparison Results

Tables I-VIII show the action recognition results on four
challenging data sets with respect to different number of
labeled training data. Specifically, we compare the proposed
method to those other approaches that only apply a single type
of feature, i.e., FV representation.

1) Performance on Action Recognition: We observe the
following.

1) Our method consistently obtains the best recognition
performance, the recognition of our semisupervised clas-
sifiers even better than the popular supervised classifiers
such as linear SVM.

2) We verify the effectiveness of the proposed method

with IDT-and CNN-based representations beyond
Bag-of-Words.

3) All methods achieve worse results on
HMDB51 compared with those on another three

data sets. This is probably owed to the complexity of
HMDB51.

4) The recognition accuracy of all methods is improved
with the increase of the number of labeled training
videos.

5) Our method gains better performance when the amount
of labeled data is small. For example, when only
3 X ¢ (63 out of 660 training data for JHMDB)
training data are labeled, our method achieves the
recognition accuracy of 42.38%, which is better than
others.

These results indicate that our algorithm benefits from the
multimanifold analysis of feature correlations.

The fully supervised linear SVM is taken as baseline,
we average the accuracy of 3 x ¢, 5 x ¢, 10 x ¢, and
15 x ¢ cases totally. Using the IDT features, the average
accuracy of our SDMM on JHMDB, HMDB51, UCF50, and
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Fig. 4. Convergence curves of the objective function values in (15) by using our SDMM on four data sets. Objective function values become optimum

solution by applying the proposed algorithm with KKT conditions. (a) JHMDB. (b) HMDBS51. (¢) UCF50. (d) UCF101.

UCF101 is improved by 5.02%, 3.82%, 4.16%, and 4.24%,
respectively. While using the TSN features, the average accu-
racy of our SDMM on JHMDB, HMDB51, UCF50, and
UCF101 is improved by 4.06%, 3.92%, 5.06%, and 3.39%,
respectively, as compared with linear SVM. It is evident that
by leveraging the unlabeled data, the recognition performance
can be improved.

The deep learning approaches, which trained on large-scale
labeled data, have shown promising performance on image
classification and action recognition. To validate the perfor-
mance of the deep learning approaches on small-scale data
set, we follow the experimental setup of [75] to extract TDDs,
then encode the TDDs of every video into FV representation
and recognize actions by linear SVM on JHMDB. In order to
train GMMs with K (K = 256), we decorrelate TDDs with
PCA and reduce its dimension to D = 64. Note that we utilize
the combined TDDs from spatial conv4 + conv5 and temporal
conv3 + conv4 nets.

We compare our SDMM algorithm with linear SVM and
TDD in case of 15 x ¢, the comparison results on JHMDB
data set with respect to different gmmSize is shown in Fig. 3.
Note that this figure contains both semisupervised learning and
fully supervised learning which use 15 x ¢ case of training
sets and full set of training set, respectively. As we expect,
either semisupervised learning or fully supervised learning,
the performance of SDMM consistently better than linear
SVM and TDD.

These results may account for many reasons. First, our
method not only takes the advantage of compared semisu-
pervised approaches in [4], [30], [31], and [37] but also
leverages the intraclass compactness and interclass separa-
bility simultaneously, hence our performance gain over other
methods is more significant when the labeled data are small.
Second, we enlarge the geometric structure information of
feature subspace by increasing training samples with many
unlabeled samples for discriminant learning, and the objective
function optimization is solved by the SPG method and the
KKT conditions mathematically, thus our multimanifold works
well in the small labeled data case. At last, the deep learning
approaches that are trained such as TDD built on CNN with
deep layers, the spatial net, and the temporal net rely on
large-scale samples. However, small-scale data set such as
real-world surveillance applications, which are hard to collect
labeled video data from daily life, cannot adapt to deep

learning approaches, because the scale of network weights,
which are learned by using fine-tuned network structure based
on large-scale data sets, may be larger than the scale of action
features.

2) Convergence Study: To validate the proposed algorithm
that it can derive optimum solution by the SPG method and
the KKT conditions, we conduct experiments on all four data
sets by applying convergence curves of the objective function
values. The number of labeled training samples is set to 15 x ¢
for each data set, and the parameters are set to the median
value of the tuned range. The results in Fig. 4 demonstrate
that the objective function values converge after only a few
iterations. Note that there are oscillations caused by the SPG
method in our convergence curves, the objective values are not
monotonically decreasing before iterations stop.

3) Computation Speed: We also set a practical example
for comparing the computation speed of the aforementioned
semisupervised algorithms. We consider the case of 15 x ¢
labeled samples for JHMDB, and use the training—testing set
given in Section IV-C, train GMMs with K = 16 and then
compute the average run time of algorithms over the standard
splits. Given the high dimension of raw features are utilized
in SFUS, SFCM, and MFCU, we first perform SVD to reduce
raw features’ dimension according to [37]. Nevertheless, our
SDMM still obtains the fastest speed due to the trait of the
SPG method. Compared with the SFUS, SFCM, and MFCU,
the run time of SDMM gains 1.06x, 4.15x, and 2.50x faster,
respectively, as shown in Table IX.

4) Parameter Sensitivity Study: Our algorithm involves two
types of parameters, i.e., semisupervised parameters and SPG
parameters. To learn how they affect the analysis performance
and iteration process on action recognition, we conduct exten-
sive experiments on the parameter sensitivity.

For semisupervised parameters, we first verify that SDMM
benefits from intramanifold and intermanifold by multimani-
fold discriminant analysis in Fig. 5(a) and (b). The JHMDB
and HMDBS51 data sets are taken to study the impact of
multimanifold learning. We fix a and u at their optimal
values over the second split, i.e., 1073 and 103, respectively,
for 15 x c¢ labeled training data. It can be seen that
as S8 varies from 10~% to 1072, the accuracy increases accord-
ingly and reaches to the peak value when 8 = 10~2. Note that
Fig. 5(a) and (b) can be regarded as the influence of both intra-
manifold and intermanifold structure proportion on accuracy.
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(a) The variation of accuracy on JHMDB using IDT, w.r.t. the parameter £ with fixed a and . (b) The variation of accuracy on HMDBS5]1 using

TSN, w.r.t. the parameter § with fixed a and x. (c) The variation of accuracy on JHMDB using IDT, w.r.t. different a, u while f = 1072, (d) The variation

of accuracy on HMDBS1 using TSN, w.r.t. different o, u while f = 102,

Since we perceive the proportion of intramanifold structure
as constant 1, hence a larger % means a larger proportion of
intermanifold structural consideration, and vice versa. When
f = 0, no intermanifold structure is utilized, thus, if f —
+00, no intramanifold structure is contained. The results
illustrate that appropriately exploiting intraclass compactness
and interclass separability simultaneously in multimanifold
subspace can further improve the performance. Then, we keep
p = 1072, and show the parameter sensitivity results in
Fig. 5(c) and (d). From these figures, we can see that mining
correlations between multiple related tasks are beneficial to
improve the performance. More specifically, we conduct exten-
sive experiments on HMDBS51 using TSN features, as shown
in Fig. 5(b) and (d). Fig. 5 shows that the recognition can
achieve stable high accuracy when all the hyperparameters are
selected in certain range, e.g., « ranges in {1072, 107", 1},
ranges in {1073, 1072, 107"}, and y ranges in {10!, 1, 10'}.
In other words, there is flexibility in choosing the parameters
in order to achieve optimal performance.

For SPG parameters, accuracy and M are used to reflect
the performance and iteration variation, respectively, where
M denotes the number of former iteration which is designed
for inequality calculation. In algorithm 1, the step 6 of SPG
method, new objective function value g(ﬁ , W) is supposed
to compare with the former Mth objective function values.
Fig. 4 illustrates the iteration variation with respect to M on
four databases. In Fig. 4, the iteration process changes slightly
corresponding to different values of M. The impact of different
values of these parameters is supposed to be related to the
trait of the feature representation. Generally speaking, M is
not sensitive to the iteration of SDMM.

V. CONCLUSION

In this paper, a novel algorithm is proposed to categorize
human actions in videos by exploring data distribution and fea-
ture correlation. Using a multimanifold-based joint framework,
our method discovers the intrinsic relationship of midlevel
features to improve recognition performance. Second, the SPG
method and the KKT conditions are applied to optimize
the objective function for training robust classifiers. Finally,
we extend the classifier into the semisupervised scenario to
exploit both labeled and unlabeled videos. We evaluate our
framework for action recognition on four challenging data

sets. The experimental results show that our approach outper-
forms all compared algorithms, especially when the amount of
labeled data is relatively small. Since semisupervised learning
methods based on generative adversarial networks (GANs)
have obtained strong empirical results, we prepare to discover
discriminative information via GANs with shallow layers in
the future.
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